An Online Ensemble of Classifiers
نویسندگان
چکیده
Along with the explosive increase of data and information, incremental learning ability has become more and more important for machine learning approaches. The online algorithms try to forget irrelevant information instead of synthesizing all available information (as opposed to classic batch learning algorithms). Nowadays, combining classifiers is proposed as a new direction for the improvement of the classification accuracy. However, most ensemble algorithms operate in batch mode. For this reason, we propose an online ensemble of classifiers that combines an incremental version of Naive Bayes, the Voted Perceptron and the Winnow algorithms using the voting methodology. We performed a largescale comparison of the proposed ensemble with other state-of-the-art algorithms on several datasets and we took better accuracy in most cases.
منابع مشابه
A Preprocessing Technique to Investigate the Stability of Multi-Objective Heuristic Ensemble Classifiers
Background and Objectives: According to the random nature of heuristic algorithms, stability analysis of heuristic ensemble classifiers has particular importance. Methods: The novelty of this paper is using a statistical method consists of Plackett-Burman design, and Taguchi for the first time to specify not only important parameters, but also optimal levels for them. Minitab and Design Expert ...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملFault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملاستفاده از یادگیری همبستگی منفی در بهبود کارایی ترکیب شبکه های عصبی
This paper investigates the effect of diversity caused by Negative Correlation Learning(NCL) in the combination of neural classifiers and presents an efficient way to improve combining performance. Decision Templates and Averaging, as two non-trainable combining methods and Stacked Generalization as a trainable combiner are investigated in our experiments . Utilizing NCL for diversifying the ba...
متن کامل